涓昏浜猴細鏉ㄥ湪
涓昏浜虹畝浠嬶細鏉ㄥ湪錛岃タ瀹変氦閫氬ぇ瀛︽暟瀛︿笌緇熻瀛﹂櫌鏁欐巿銆佸崥澹敓瀵煎笀銆佸浗瀹朵紭闈掋€?007鍜?009騫村垎鑾蜂腑灞卞ぇ瀛﹀簲鐢ㄦ暟瀛︽湰縐戝拰紜曞+瀛︿綅錛?014騫磋幏鏂板姞鍧″崡媧嬬悊宸ュぇ瀛﹀崥澹浣嶃€備富瑕佷粠浜嬩俊鎭鐞嗕笌鏃犵嚎閫氫俊鐨勬暟瀛︾悊璁轟笌鏂規硶鐮旂┒錛屽湪IEEE Trans. Inf. Theory銆両EEE Trans. Signal Process.銆丄ppl. Comput. Harmonic Anal.絳夋湡鍒婁笌浼氳鍙戣〃瀛︽湳璁烘枃60浣欑瘒錛岃胺姝屽鏈紩鐢?600浣欐銆備換鎴栨浘浠籌EEE Trans. Signal Process.鏈熷垔緙栧銆?Elsevier) Signal Process.鏈熷垔緙栧銆佹媧蹭俊鍙峰鐞嗕細璁甌utorial鎺堣浜恒€両EEE淇″彿澶勭悊瀛︿細浼犳劅鍣ㄩ樀鍒椾笌澶氶€氶亾錛圫AM錛夋妧鏈鍛樹細濮斿憳銆備富鎸?欏瑰浗瀹跺熀閲戝欏圭洰錛堥潚騫淬€佷袱涓潰涓婂強浼橀潚欏圭洰錛夈€?欏圭鎶€閮ㄩ噸鐐圭爺鍙戣棰橈紝鍙婂欏瑰崕涓轟紒涓氭í鍚戣棰樸€?/p>
鎶ュ憡鍐呭姒傝錛歋pectral analysis of signals is a core component of modern information techniques. The rapid developments of radar detection and wireless communications have advanced its research from fast Fourier transform (FFT) in the 1960s to subspace methods emerging in the 1970s, and then to sparse and compressed sensing methods of this century. In this talk, we revisit the Carath茅odory-Fej茅r Theorem (1911) on Vandermonde decomposition of Toeplitz covariance matrices and discuss its key role in modern spectral analysis. We emphasize our extension of the Carath茅odory-Fej茅r Theorem from 1-D to high dimensions and show how it forms the basis of previous approaches and innovates novel methods for spectral analysis.
鐞嗗闄?/div>
2024騫?3鏈?9鏃?/div>