銆€銆€鎶ュ憡棰樼洰錛氱鍩虹撼綾沖厜瀛愬櫒浠?br style="border-bottom-color: rgb(0, 0, 0); border-bottom-style: none; border-bottom-width: 0px; border-left-color: rgb(0, 0, 0); border-left-style: none; border-left-width: 0px; height: auto; line-height: 22px; padding-left: 0px; padding-right: 0px;" /> 銆€銆€鎶ュ憡鏃墮棿錛?鏈?9鏃ヤ笅鍗?4:00-16:00
銆€銆€鍦扮偣錛氳禌鍗氬崡妤?12浼?xì)璁銆?br style="border-bottom-color: rgb(0, 0, 0); border-bottom-style: none; border-bottom-width: 0px; border-left-color: rgb(0, 0, 0); border-left-style: none; border-left-width: 0px; height: auto; line-height: 22px; padding-left: 0px; padding-right: 0px;" /> 銆€銆€鎶ュ憡浜猴細(xì)鎴撮亾閿岋紙嫻欐睙澶у鏁欐巿錛屽浗瀹舵澃闈掞級
銆€銆€鎶ュ憡浜虹畝浠嬶細(xì)
銆€銆€鎴撮亾閿岋紝嫻欐睙澶у姹傛槸鐗硅仒鏁欐巿/鍏夌數(shù)瀛﹂櫌鍓櫌闀褲€佸浗瀹舵澃鍑洪潚騫寸瀛﹀熀閲戣幏寰楄€呫€傞暱鏈熻嚧鍔涗簬楂樻€ц兘涓庨珮闆嗘垚搴︾鍩洪泦鎴愬厜瀛愬櫒浠跺強搴旂敤鐮旂┒錛屽彂灞曚簡紜呭熀闈炲縐板厜娉㈠鍙婂櫒浠舵柊緇撴瀯鍜屾柊鏈虹悊錛屽疄鐜頒簡涓€緋誨垪楂橀泦鎴愬害楂樻€ц兘鐨勫亸鎸皟鎺с€佹ā寮忓鐢ㄣ€佸彲璋冭皭-鍒囨崲鍣ㄤ歡鍙婂叾鍔熻兘闆嗘垚錛岃В鍐充簡濡備綍紿佺牬鍗曚竴澶嶇敤鎶€鏈閲忛檺鍒跺茍瀹炵幇鍏跺彲閲嶆瀯鎬х瓑闂錛屽厛鍚庤幏寰楁禉姹熺渷縐戝鎶€鏈竴絳夊銆佷腑鍥戒華鍣ㄤ華琛ㄥ浼?xì)閲戝浗钘╅潚骞村瀛愬銆佹禉姹熺渷闈掑勾縐戞妧濂栥€佹禉姹熺渷楂樻牎縐戠爺鎴愭灉濂栥€佸浗瀹朵紭縐€闈掑勾縐戝鍩洪噾銆佸浗瀹舵澃鍑洪潚騫寸瀛﹀熀閲戠瓑濂栧姳鎴栬崳瑾夈€?br style="border-bottom-color: rgb(0, 0, 0); border-bottom-style: none; border-bottom-width: 0px; border-left-color: rgb(0, 0, 0); border-left-style: none; border-left-width: 0px; height: auto; line-height: 22px; padding-left: 0px; padding-right: 0px;" /> 銆€銆€鍙戣〃鍥介檯SCI鏈熷垔璁烘枃170浣欑瘒錛屽寘鎷綔涓虹涓€/閫氳浣滆€呭湪Nature Communications銆丳roceedings of the IEEE銆丩ight: Science & Applications銆丩aser & Photonics Reviews銆丄CS Nano銆丱ptica絳夎憲鍚嶅厜瀛︽湡鍒婂彂琛?40浣欑瘒銆傚叾鎴愭灉琚浗鍐呭鍚岃騫挎硾寮曠敤錛岃鏂嘢CI寮曠敤4500浣欐錛屽崟綃囨渶楂楽CI寮曠敤320浣欐騫跺叆閫変簡緹庡浗鍏夊瀛︿細(xì)鏈熷垔銆奜ptics Express銆嬪垱鍒?0鍛ㄥ勾鐧劇瘒楂樺紩璁烘枃錛岃繛緇叆閫変簡2015-2018騫寸埍鎬濆敮灝?dāng)銆婁腑鍥介珮琚紩瀛﹁€呮鍗曘€嬶紙鐗╃悊瀛﹀拰澶╂枃瀛﹀縐戯級銆傚簲閭€鍦ㄥ厜閫氫俊棰嗗煙欏剁駭瀛︽湳浼?xì)璁?緹庡浗OFC銆侀泦鎴愬厜瀛﹂鍩熼《綰т細(xì)璁?IPR絳夌壒閭€鎶ュ憡60浣欐錛屾媴浠籄CP絳夋妧鏈鍛樹細(xì)涓誨腑/鍏卞悓涓誨腑浠ュ強欏剁駭浼?xì)璁?緹庡浗OFC絳夋妧鏈鍛樹細(xì)濮斿憳30浣欐銆傚簲閭€鎷呬換浜咺EEE Photonics Technology Letters銆丱ptical and Quantum Electronics銆丳hotonics Research絳夊浗闄匰CI鏈熷垔鍓富緙?鎵ц涓葷紪銆?br style="border-bottom-color: rgb(0, 0, 0); border-bottom-style: none; border-bottom-width: 0px; border-left-color: rgb(0, 0, 0); border-left-style: none; border-left-width: 0px; height: auto; line-height: 22px; padding-left: 0px; padding-right: 0px;" /> 銆€銆€鎶ュ憡鎽樿錛?br style="border-bottom-color: rgb(0, 0, 0); border-bottom-style: none; border-bottom-width: 0px; border-left-color: rgb(0, 0, 0); border-left-style: none; border-left-width: 0px; height: auto; line-height: 22px; padding-left: 0px; padding-right: 0px;" /> 銆€銆€The demand for data has been increasing exponentially with very high growth rates from the access to data-centre interconnects and to long-haul transmissions. Further enhancement of the information capacity has been a perennial goal of scientists and engineering globally. A cost-effective solution for expanding the link capacity of optical interconnects is utilizing advanced multiplexing technologies. Currently, the most popular technologies include wavelength-division-multiplexing (WDM), polarization-division-multiplexing (PDM), mode-division-multiplexing (MDM), etc. As it is well known, silicon photonics is compatible with standard CMOS (complementary metal oxide semiconductor) processes and thus has attracted much attention as a very promising platform to build ultrasmall integrated photonic devices for large-scale photonic integrated circuits in the future. Silicon-based on-chip (de)multiplexers are really attractive and great progresses have been achieved in the past years, which will be reviewed in the talk. There are three parts. The first part is for high-performance wavelength-division-multiplexers, including arrayed-waveguide gratings (AWGs) and microring-resonators (MRRs) as the representatives. The second part is for high-performance PDM devices like polarizers, polarization-beam splitters (PBSs) and polarization rotators (PRs) as the representative on-chip polarization-handling devices. The third part for mode converters/ (de)multiplexers. Hybrid (de)multiplexers enabling more than one multiplexing technologies simultaneously will be discussed. As the link capacity increases dramatically, it is also becoming more and more important to develop smart photonic networks-on-chip so that the bandwidth/channels can be utilized optimally and flexible. One of the keys for realizing smart (reconfigurable) photonic networks is switchable / tunable photonic integrated devices. As silicon has a large thermo-optic (TO) coefficient as well as the large heat conductivity (~149W/m?K), it is promising to realize efficient thermally-switchable/tunable silicon-based photonic integrated devices with reduced power consumption. Our recent work on thermally-switchable / tunable silicon photonic devices with micro-/nano-heaters will be also reviewed.
銆€銆€References:
銆€銆€[1]Dai*, 鈥淪ilicon Nanophotonic Integrated Devices for On-chip Multiplexing and Switching,鈥?IEEE/OSA Journal of Lightwave Technology, 35(4): 572-587, 2016(Invited).
銆€銆€[2]Dai* et al. "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects," Nanophotonics, 3(4-5): 283鈥?11, 2014 (invited).
銆€銆€[3]Dai et al. 鈥淧olarization management for silicon photonic integrated circuits,鈥?Laser & Photonics Reviews 7(3):303-328, 2013 (invited).
銆€銆€[4]Dai*, et al. 鈥淧assive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity, and loss reduction,鈥?Light: Science and Applications, 1: 1-12, 2012 (invited).
鍏夌數(shù)瀛﹂櫌
2018騫?鏈?7鏃?br />