锘?!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">AV优选在线,人妻 校园 激情 另类,欧美日韩人妻精品一区二区三区

国产中文精品无码欧美综合小说,欧美重囗味成人无码区,国产91精品一区二区麻豆亚洲福利电影,欧美视频一区

銆婃暟瀛﹀縐戝鏈姤鍛婏紙55錛夈€?/h1>

娣誨姞鏃ユ湡:2020-10-12 09:24:37 闃呰嬈℃暟錛?script>_showDynClicks("wbnews", 1558477759, 21968)

    鎶ュ憡鏃墮棿錛?020騫?0鏈?2鏃ワ紙鍛ㄤ竴錛変笅鍗?4錛?0-15錛?0
銆€銆€鎶ュ憡褰㈠紡錛氳吘璁細璁紙浼氳鍙鳳細270637082銆佸瘑鐮侊細123456錛?br> 銆€銆€鎶ュ憡棰樼洰:  Hyperspectral Images Unmixing Using Deep Learning
鎽樿: Due to factors such as low spatial resolution, microscopic material mixing, and multiple scattering, hyperspectral images generally have problems with mixed pixels. This paper proposes two network structures under the framework of deep learning, which can be well applied to hyperspectral images unmixing: 1) network architecture based on spectral information, the architecture uses a fully connected neural network and the spectral vector is used as an input for unmixing; 2) network architecture based on spatial-spectral information, the architecture further combines the convolutional neural networks to fuse the spatial information and spectral information of the hyperspectral image for unmixing. Experiments on simulated dataset and real dataset show the efficiency of our approach.
銆€銆€鎶ュ憡浜虹畝浠嬶細鏉庣孩錛屾暀鎺堬紝鍗氬+鐢熷甯堬紝浜彈鍥藉姟闄㈡斂搴滅壒孌婃觸璐翠笓瀹訛紝鍗庝腑縐戞妧澶у鍗撹秺瀛﹁€呯壒鑱樻暀鎺堛€備富瑕佷粠浜嬮€艱繎涓庤綆椼€佹満鍣ㄥ涔犱笌妯″紡璇嗗埆絳夋柟闈㈢殑鐮旂┒錛屽湪IEEE Trans絳夐噸瑕佸鏈湡鍒婁笂鍙戣〃瀛︽湳璁烘枃50浣欑瘒銆備富鎸佸浗瀹惰嚜鐒剁瀛﹀熀閲戙€佲€滃崄浜屼簲鈥濊埅澶╂敮鎾戣鍒掗」鐩強鍥介槻棰勭爺鍩洪噾絳夊涓鐮旈」鐩€?006騫磋嚦2019騫存湡闂村嬈″簲閭€璁塊棶棣欐腐嫻鎬細澶у銆佹境闂ㄥぇ瀛︺€佺編鍥藉姞宸炲ぇ瀛﹀皵婀懼垎鏍★紙UCI錛夈€佹境澶у埄浜氭倝灝煎ぇ瀛︾瓑錛屽崄浣欐鍑哄腑鍥介檯瀛︽湳浼氳銆?006騫磋幏瀹濋挗鏁欒偛鍩洪噾鈥滀紭縐€鏁欏笀鈥濆錛?009騫翠富鎸佸緩璁劇殑鈥滃鍙樺嚱鏁頒笌縐垎鍙樻崲鈥濊紼嬭璇勪負鍥藉綺懼搧璇劇▼銆?013騫磋瘎涓哄浗瀹剁簿鍝佽祫婧愬叡浜紼嬨€?018騫磋瘎涓哄浗瀹剁簿鍝佸湪綰垮紑鏀捐紼嬶紱2013騫磋幏婀栧寳鐪佹暀瀛︽垚鏋滀簩絳夊錛?014騫磋幏婀栧寳鐪佸悕甯堢О鍙楓€?br> 銆€銆€嬈㈣繋騫垮ぇ甯堢敓鍙傚姞錛?/p>


鐞嗗闄?br>2020騫?0鏈?2鏃?/p>


鍒嗕韓鑷籌細