鎶ュ憡棰樼洰錛欱urning number of caterpillars
銆€銆€鎶ュ憡浜猴細鑳″皬鍏板崥澹紙鍗庝腑甯堣寖澶у錛?br style="border-bottom-color: rgb(0, 0, 0); border-bottom-style: none; border-bottom-width: 0px; border-left-color: rgb(0, 0, 0); border-left-style: none; border-left-width: 0px; height: auto; line-height: 22px; padding-left: 0px; padding-right: 0px;"> 銆€銆€鏃墮棿錛?019騫?0鏈?1鏃ワ紙鍛ㄤ簲錛?9:30-10:30
銆€銆€鍦扮偣錛氭牸鑷翠腑妤?00瀹?br style="border-bottom-color: rgb(0, 0, 0); border-bottom-style: none; border-bottom-width: 0px; border-left-color: rgb(0, 0, 0); border-left-style: none; border-left-width: 0px; height: auto; line-height: 22px; padding-left: 0px; padding-right: 0px;">
銆€銆€鎶ュ憡鎽樿錛欸raph burning is a deterministic discrete time graph process that can be interpreted as a model for the spread of influence in social networks. The burning number b(G) of a graph G is the minimum number of steps in a graph burning process for G. Bonato at al. conjectured that b(G)鈮?鈭歯? for any connected graph G of order n. In this paper, we confirm this conjecture for caterpillars. We also determine the burning numbers of caterpillars with at most two stems.
銆€銆€鎶ュ憡浜虹畝浠嬶細鑳″皬鍏幫紝鐜頒負鍗庝腑甯堣寖澶у鏁板涓庣粺璁″瀛﹂櫌鍔╃悊鐮旂┒鍛樸€?012騫翠簬婀栧寳澶у鑾風悊瀛︾澹浣嶏紝2015騫翠簬鍗椾含澶у鑾風悊瀛﹀崥澹浣嶃€?013騫?鏈堣嚦2013騫?2鏈堝湪緹庡浗瑗垮紬鍚夊凹浜氬ぇ瀛﹁繘琛岀煭鏈熷鏈闂紝2017騫?鏈堣嚦2018騫?鏈堝湪鎹峰厠鏌ョ悊澶у浜ゆ祦璁塊棶銆傜編鍥姐€婃暟瀛﹁瘎璁恒€嬭瘎璁哄憳錛屼富鎸佸浗瀹惰嚜鐒剁瀛﹀熀閲戦潰涓婇」鐩拰闈掑勾欏圭洰鍚?欏癸紝涓繪寔婀栧寳鐪佽嚜鐒剁瀛﹀熀閲戦潚騫撮」鐩? 欏癸紝褰曠敤鍜屽彂琛⊿CI 绱㈠紩璁烘枃20浣欑瘒銆?br style="border-bottom-color: rgb(0, 0, 0); border-bottom-style: none; border-bottom-width: 0px; border-left-color: rgb(0, 0, 0); border-left-style: none; border-left-width: 0px; height: auto; line-height: 22px; padding-left: 0px; padding-right: 0px;"> 銆€銆€嬈㈣繋騫垮ぇ甯堢敓鍙傚姞錛?/p>
鐞嗗闄?
2019騫?0鏈?鏃?/p>